【设E,F是两个Banach空间,令A:D(A)′E→F为一个闭算子,且D(A)′=E。求证:D(A′)′σ(F′,F)=F′D(A′)σ(F′,F)=F′。其中A′是A的伴随算子,F′是F的对偶空间,σ(F′,F)为F′上的弱*拓扑,D(A′)′σ(F′,F)表示D(A′)在弱拓扑σ(F′,F)下的闭包。】
叶秋走上讲台,看着黑板上已经写好的例题。
“怎么样,能解不?”
秃顶老师似笑非笑地看着叶秋。
“问题不大!”
叶秋沉吟一会儿,便直接唰唰唰写了起来;
【解:设F是E的子向量空间满足F′≠E.则存在f∈E'不为0,使得(f,x)=0,x∈F……】
教室里忽然安静了下来,所有人都紧盯着黑板。
慢慢地,议论声渐起。
“我去,他还真会解!”
“现在的高中生都这么夸张了嘛?”
“麻蛋,泛函分析我都还没搞明白呢?这家伙竟然学会了。”
“话说高中时期竞赛班的学生好像也没那么厉害吧!”
“这家伙该不会真有能耐一小时不到就解完冬令营考试的三道大题吧……”
……
教室里响起一阵嗡嗡声。
不少原本质疑叶秋的人,一个个脸上也流露出了凝重之色。
要知道,泛函分析属于数学系的专业基础必修课,主要研究无穷维函数空间的数学分析,一般要到大三才能学到。
在学习这门课之前,你首先得掌握《高等代数》《数学分析》《实变函数》《集论拓扑》《复变函数》《实分析》《常微分方程》《偏微分方程》等课程。
问题是,这些课程都只有大学才有,至少要花两年以上的时间才能掌握。
而讲台上这个年轻人,不过是一名高中生。
高中时代,语文数学英语物理化学生物都学不过来了,他哪来的时间,哪来的精力掌握这些知识?
这些人自然不知道,过去两个多月,叶秋除了抽出一小部分精力复习五大学科竞赛之外,剩下的时间,全部放在了大部头的《数学原理》上面。
他非但将布尔巴基学派的《数学原理》全部看了一遍,而且还在进一步深入反刍研究。
别说本科阶段学习的线性泛函分析了,即使研究生阶段才能学到的非线性泛函分析,对他而言也没什么难度。
唰唰唰——